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Abstract: We introduce a simple measurement technique 
which can track sudden and/or transient changes in respira- 
tory mechanics even in unsteady respiration. Respiratory 
signals are segmented into single-breath signals. Breaths con- 
taminated with noise produced by unsteadiness are discarded 
manually. A linear single-compartment model is fit to the data 
of "noise-free" single breaths, estimating its model param- 
eters. Respiratory mechanics is interpreted on the basis of 
breath-to-breath changes in the parameter estimates. The 
technique was tested in anesthetized subjects with unstable 
respiratory conditions. It was shown that the technique was 
noise insensitive and that the estimated model parameters 
well reflected the dynamic changes in respiratory mechanics. 
Although our method provides limited information compared 
with more sophisticated measurements, it may be useful when 
respiration is unstable, as frequently seen during light anes- 
thesia or respiratory care. 
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Introduction 

There are two approaches to measure respiratory 
mechanics. One employs perturbation (excitation) of 
the respiratory system, e.g., flow interruption [1], re- 
laxed expiration [2], and forced oscillation [3]. It 
essentially requires a perturbation device and discon- 
tinuation of respiration, though it generally provides 
more in-depth information on the respiratory system 
than other  approaches. It is well-suited for steady-state 
measurements. The other way to measure respiratory 
mechanics is to examine the t ime-domain relationship 
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between flow and pressure wave forms during either 
spontaneous breathing or mechanical ventilation. Al- 
though the latter provides limited information, it allows 
the tracking of sudden changes in respiratory mechanics 
with neither an excitation device nor cessation of respi- 
ration. Novel techniques have been proposed to moni- 
tor sudden or transient changes using the latter 
approach [4-6]; they are able to follow the changes 
occurring even within a single breath. They are, how- 
ever, very sensitive to noise, either intrinsic or extra- 
neous to the system. Under  light anesthesia such as 
the induction or the awakening phases, unstable 
respiration is often produced by movements,  cough, 
bucking, and swallowing, resulting in noisy respiratory 
signals. This noise prevents more  complex techniques 
from analyzing suddenly changing respiratory mechan- 
ics. We, therefore,  introduce a simple technique which 
can trace sudden and continuous variations in respira- 
tory mechanics even using data contaminated such 
noise. Our technique is not intended for no-line data 
analysis. 

Methods 

The protocol was approved by the Chiba University 
Ethical Committee and written informed consent was 
obtained from the adult subject and the guardian of the 
infant. 

Theory 

We consider here the respiratory system during 
mechanical ventilation. Since the respiratory signals 
are roughly sinusoidal under  these conditions, the 
respiratory system can be approximated to a single- 
compartment  system (see Appendix).  We, therefore,  
employ a linear single-compartment model (Fig. 1). 
Assuming airway flow (V) as the input, the output air- 
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Fig. 1, Schematic representation of a linear single- 
compartment model. The model consists of a single airway 
conduit connected in series with an alveolus surrounded by 
parenchymal tissue. The airway and the alveolar region are 
represented mechanically by a resistance (R) and an elastance 
(.E) [the inverse of compliance (C)], respectively. Paw and 
V denote pressure and flow measured at airway opening, 
respectively 

way pressure (Paw) is defined by the differential 
equation, 

Paw = RV + EV + P0, 0) 

where V is ventilation volume (the numerical integra- 
tion of ~r); R and E are resistance and elastance (the 
inverse of compliance) of the respiratory system, re- 
spectively; P0 is a term representing the pressure at 
end-expiration, for example, which is positive when 
positive-end expiratory pressure (PEEP)  is applied. 
Substituting V and V as the independent  variables, and 
Paw as the dependent  variable into Eq. 1, the coeffi- 
cients R, E, and Po are obtained by a x 2 multiple linear 
least-squares regression analysis which minimizes the 
cost function, 
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Fig. 2. Breath-by-breath segmentation of respiratory signals 
measured during mechanical ventilation in an infant. Airway 
flow (Flow), ventilation volume which is the numerical inte- 
gration of airway flow (Volume), and airway pressure (Paw) 
are shown. Each individual breath is segmented with ertical 
dashed lines 

N 

X 2 = 1 , ~ .  [Paw(i) - Paw(i)] 2, (2) 

where N denotes the number  of data points. Paw 
and Paw denote measured and estimated Paws, 
respectively. 

Measured respiratory signals are segmented into 
single-breath data (Fig. 2). First, end-expiratory points 
(defined as bottoms, local minima) of the volume signal 
are determined by a bot tom-detect ion algorithm. One 
breath is defined as the period from a local minimum to 
the subsequent local minimum of the volume signal. 
Based on this definition, all the respiratory signals are 
segmented into single-breath signals. Following breath- 
by-breath segmentation, breaths whose signals are con- 
taminated by noise are discarded manually for further 
analysis. Noise here includes the effects of cough, move- 
ment, esophageal spasm (involuntary contraction of 
esophageal muscle), as well as bucking and swallowing 
(Fig. 3a,b). 

Fig. 3. a Example of respiratory signals in a spontaneously 
breathing subject during N20-O2 anesthesia. Airway flow 
(Flow), ventilation volume (Volume), and transpulmonary 
pressure (Ptp) signals are presented. Transpulmonary pres- 
sure was obtained by subtracting esophageal from mouth 
pressures. A sigh is recognized in all the signals at approxi- 
mately 35 s. Large downward deflections, indicated artifacts 
with arrows, are seen only in the Ptp signal. They were seem- 
ingly produced by involuntary contraction of the esophageal 
muscle. They could mislead results of the parameter estima- 
tion. b A part of Fig. 3a is enlarged. Each breath is isolated by 
the breath-by-breath segmentation program as indicafed with 
dotted ertical lines. The Ptp signal of the t6th breath is con- 
taminated by noise. Therefore, the 16th breath is discarded 
from further analysis, c Breath-to-breath changes in respira- 
tory conditional parameters. The end-expiratory level of lung 
volume (FRC le el), tidal volume, respiratory frequency, and 
maximum inspiratory and expiratory flows are calculated 
from the single-breath data. They are plotted on a time axis. d 
Breath-to-breath changes in lung mechanical parameters are 
presented; lung resistance and elastance, and end-expiratory 
pressure on top, middle, and bottom panels, respectively 
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Parameter estimation with the single-compartment 
model described above is performed with the "noise- 
free" single-breath data from breath to breath. The es- 
timated respiratory mechanical parameters, R and E, of 
the individual breaths are plotted on a time scale. 

Experiments 

We measured airway flow (V) and pressure (Paw) at 
airway opening in an infant anesthetized, intubated, and 
paralyzed with N20-O2-sevoflurane and vecuronium. 
Both tidal volume and ventilatory frequency were in- 
tentionally varied continuously with a wide distribution 
using manual artificial ventilation. The changes in respi- 
ratory system resistance and elastance were computed 
using Eqs. 1 and 2. 

Respiratory signals were also measured in a subject 
anesthetized with O2-N20 during spontaneous breath- 
ing via a face mask. We measured mouth pressure (Pro) 
and V at the face mask, and esophageal pressure (Pes) 
by an esophageal balloon method. Transpulmonary 
pressure (Ptp) was calculated as the difference between 
Pm and Pes. We computed the changes in lung resis- 
tance and elastance, substituting Ptp for Paw in the left 
side of Eq. 1. 

Using the single-breath data, we computed breath-to- 
breath changes in respiratory conditional parameters 
which likely affect respiratory mechanics, i.e., end- 
expiratory lung volume (functional recidual capacity, 
FRC level), tidal volume, respiratory frequency, and 
maximum inspiratory and expiratory flows. 

R e s u l t s  

Figure 2 shows the breath-by-breath segmentation 
employed in our technique. Figure 4 shows an example 
of the computer output of the parameter estimation 
applied to single-breath data. As presented in the inset 
figure, fitting is fairly good, suggesting that the model 
employed is acceptable. Figure 3 shows the measured 
respiratory signals, and breath-to-breath changes in res- 
piratory conditional and lung mechanical parameters in 
a spontaneously breathing subject. As presented in 
Fig. 3a,b, it is relatively easy to identify contamination 
by noise which can mislead the parameter estimation. 
Breaths which are contaminated by noise are discarded 
manually for further analysis. Figure 3c demonstrates 
the serial changes in respiratory conditional parameters 
obtained in association with the breath-to-breath pa- 
rameter estimation. Figure 3d plots the changes in lung 
mechanical parameters. Figure 5 demonstrates the mea- 
sured signals and the changes in respiratory conditional 
and mechanical parameters in a paralyzed and artifi- 
cially ventilated infant. Unstable ventilation created in- 
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Fig. 4. A computer output of the model fitting to the data of 
a single breath. In the top panel, solid and dashed lines indicate 
the data and the best fit model, respectively. The parameter 
values, their estimated standard deviations, the value of the 
cost function, x 2, and the full covariance matrix are tabulated 
for the best fit model 

tentionally is clear (Fig. 5a), and is reflected in appre- 
ciable variations in the conditional parameters shown in 
Fig. 5b. Figure 5c demonstrates substantial fluctuation 
in the mechanical parameters which were presumably 
produced by the unstable ventilation. 

D i s c u s s i o n  

We employed breath-by-breath segmentation: (1) to 
track breath-to-breath changes in respiratory mechani- 
cal parameters, and (2) to discard breaths whose signals 
are contaminated by noise. 

From the viewpoint of tracing rapid changes in respi- 
ratory mechanics, the recursive least-squares tech- 
niques are much better than ours [4-6]. They can be 
used to track the changes in mechanical parameters 
occurring even within a single breath. However, they 
are very sensitive to noise and it is difficult to minimize 
the influence of noise. Furthermore, it is almost impos- 
sible for them to eliminate the effect of biologically 
intrinsic noise on the computation of respiratory me- 
chanics. Such noise is often produced by movements, 
cough, bucking, swallowing, and esophageal spasm in 
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Fig. 5. a Respiratory signals, b breath- to-breath changes, and 
c mechanical  parameters  in a mechanically ventilated and 
paralyzed infant during anesthesia. A wide variation of both 
tidal volume and respiratory frequency were intentionally 
produced. Its effects on the condit ional  and the mechanical  
parameters are clearly observed in b and c 
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unstable respiration during light anesthesia or respira- 
tory care. 

Dechman et al. [7] employed a block-by-block analy- 
sis, with each block containing a multiple breaths, to 
assess stepwise changes in respiratory mechanics. Their 
technique is similar to ours, with the only difference 
being the size of segmentation. The effect of noise on 
respiratory mechanical computation in their technique 
is essentially similar to ours. Only the breaths contami- 
nated by noise are required to be discarded in our 
technique. In their method, by contrast, even if only 
one breath in a block is contaminated by noises, the 
whole block should be disregarded to obtain reliable 
estimates of the respiratory mechanical parameters. In 
this respect, our breath-by-breath segmentation is more 
efficient. 

There are several measurement techniques of respi- 
ratory mechanics which can be carried out in anesthe- 
tized patients. Though the flow interruption [1] and the 
relaxed expiration [2] techniques are relatively simple 
and provide more information than ours, they require 
muscle relaxation and discontinuation of respiration. 
Forced oscillation methods provide a detailed depiction 
of respiratory mechanics, however the techniques are 
highly complex [3]. They are, therefore, not advanta- 
geous in analyzing rapidly changing respiratory me- 
chanics. On the other hand, our novel technique re- 
quires neither paralysis nor cessation of respiration and 
is based upon single-breath data during either mechani- 
cal ventilation or spontaneous breathing. Our method 
appears well suited for the analysis of time-varying 
changes in respiratory mechanics during anesthesia, 
though the mechanical description is expressed by only 
two parameters which brings with it certain inherent 
limitations. 

The results, as presented in Fig. 2, suggest that the 
linear single-compartment model is a reasonable repre- 
sentation. Lung or respiratory mechanical structures 
can be described in more complex models such as two- 
compartment models [2,8] and nonlinear models [9,10], 
but respiratory signals during mechanical ventilation or 
spontaneous breathing do not contain a wide range of 
frequency components, indicating that the respiratory 
system behaves as a single-compartment system (see 
Appendix). Therefore, the single-compartment model 
is adequate to obtain rough estimates of quantitative 
changes in respiratory mechanics in a clinical situation. 

Respiratory mechanics are known to be influenced by 
various respiratory conditions such as lung volume, fre- 
quency, respiratory flow, and tidal volume [11]. Con- 
comitant changes in those conditional parameters are 
easily obtained simultaneously with the breath-by- 
breath model fitting as shown in Figs. 3c and 5b. Exam- 
ining the correlation between the conditional and the 
mechanical parameters may allow us to understand in 

greater detail the changes that occur in respiratory me- 
chanics during unsteady respiratory conditions, such as 
during induction or awakening periods of anesthesia. 

In summary, we developed a technique to measure 
sudden and/or continuous changes in respiratory me- 
chanics even during unstable respiration. Respiratory 
signals were segmented into single breaths and noisy 
breaths were disregarded. Then a linear single- 
compartment model was fit to each noiseless breath 
with parameter estimation. Our method was shown to 
be relatively noise insensitive and the estimated model 
parameters reflected dynamic changes in respiratory 
mechanics under unsteady respiration. 

Appendix 

Two-compartment models for the respiratory system 
are formulated in general, 

15 + K1P = K2V + K?V + K4V + Ks, (A1) 

where K i are constants. P and 9 are pressure and flow, 
respectively. 15 and V are the time-derivatives of P and 
V, respectively, and V is the time-integral of V. Then 
Fourier-transforming Eq. A1 and solving it for P/9, the 
following equations are obtained, 

R = (K2o) 2 + K1K 3 - K4)/(co 2 + K12), (A2) 

E =  {(K3 - KIK2)r 2 + K1K4}/(CO 2 + K12), (A3) 

where c0 is angular frequency (27cf: f frequency). R and 
E denote resistance and elastance of the respiratory 
system, respectively. Equation A2 indicates the fre- 
quency-dependent behavior of R that has been well 
documented in previous studies [8]. However, when res- 
piratory signals contain only a single frequency, i.e., the 
signals are purely sinusoidal, Eqs. A2 and A3 indicate 
that at the frequency R and E are determined uniquely 
and that the respiratory system behaves as a single- 
compartment system. In the physiological range of fre- 
quency, respiratory signals can be approximated by a 
sinusoidal [11]. 
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